Plant phosphate homeostasis is regulated by an inositol pyrophosphate signaling molecule

Featured

Phosphorus is an essential building block for nucleic acids and membranes, forms an important energy currency of the cell and can act as a signaling molecule. Soil-living organisms take up phosphorus in the form of inorganic phosphate. How cells ‘measure’ phosphate concentrations to maintain sufficient phosphate levels in their cells and tissues is poorly understood. The group of Michael Hothorn has now elucidated that phosphate homeostasis in plants is regulated by an inositol pyrophosphate signaling molecule, which is generated by a bifunctional kinase/phosphatase enzyme in response to changing ATP and phosphate levels. The signaling molecule then binds to a cellular receptor, which in turn inactivates a transcription factor regulating phosphate starvation responses. Thus, a signaling molecule relays the nutrient status of the plant to a signaling cascade, allowing for nutrient uptake, storage and redistribution. The groups of Dorothea Fiedler (Leibniz Institute for Molecular Pharmacology, Berlin, Germany), Alisdair Fernie (Max Planck Institute for Molecular Plant Physiology, Golm, Germany) and Gabriel Schaaf (University of Bonn, Germany) contributed to this study that was published in eLife on August 22.

Pushing and pulling nucleosomes to control transcription initiation

Featured

Chromatin remodelers are protein machines that move or eject nucleosomes from the chromatin template to regulate gene expression. Kubik et al. show how two distinct classes of remodelers, which they call « pushers » and « pullers », interact genome-wide at promoter regions to determine both the frequency of gene transcription and the precise site of initiation.

Michel Milinkovitch and Robbie Loewith receive an ERC Advanced Grant

Featured

After receiving an ERC Starting Grant in 2008 and an ERC Consolidator Grant in 2014, Robbie Loewith has been awarded an ERC Advanced Grant for his research project entitled “Tension of ENDOmembranes maintained by TORC1 (TENDO)”. The aim is to understand how TORC1 regulates, and is regulated by, vacuolar membrane tension.

The grant is endowed with 2.25 million Euros over 5 years.

_____________________________________________________________________________________________________

An ERC Advanced Grant has been awarded to Michel Milinkovitch for his research project entitled “Identifying how Evolution exploits physical properties of tissues to generate the complexity and diversity of Life (EVOMORPHYS)”. The aim is to identify the drivers of Life’s morphological complexity and diversity.

The grant is endowed with 2.5 million Euros over 5 years.

_____________________________________________________________________________________________________

Summary of the research projects

Information

Details (pdf)

La savante organisation des plumes des oiseaux

Featured

Une étude à laquelle ont collaboré Athanasia Tzika et Michel Milinkovitch démontre comment des signaux génétiques et mécaniques se combinent pour permettre la formation d’un réseau organisé de plumes chez les oiseaux, leur permettant de voler. Les résultats ont été publiés le 21 février 2019 dans PLOS Biology.

Communiqué de presse

Article

Vidéo : formation des plumes chez un embryon de poulet

An operon-like transcript has been identified in plants

Featured

Operons were thought to be absent in plants. The group of Michael Hothorn now reports the identification of an operon-like transcript in plants that allows for the concerted expression of a previously unknown cell-cycle regulator and a metabolic enzyme. This highly unusual transcript is conserved across the entire plant kingdom and is required for plant embryo development and growth. This study was published on February 8, 2019 in Nature Plants.

Summary

Article

Jean-Claude Martinou wins the Lelio Orci Award 2018

Featured

The Lelio Orci Price has been attributed to Jean-Claude Martinou for his work on the control of mitochondrial organisation and physiology. His research group has made fundamental discoveries on the molecular mechanisms controlling the shape of mitochondria, their ability to import and to process metabolites, and to adapt to various metabolic situations.

The official award ceremony will take place on 15 February 2019 at the LS2 Annual Meeting 2019

Information