Plant phosphate homeostasis is regulated by an inositol pyrophosphate signaling molecule

Phosphorus is an essential building block for nucleic acids and membranes, forms an important energy currency of the cell and can act as a signaling molecule. Soil-living organisms take up phosphorus in the form of inorganic phosphate. How cells ‘measure’ phosphate concentrations to maintain sufficient phosphate levels in their cells and tissues is poorly understood. The group of Michael Hothorn has now elucidated that phosphate homeostasis in plants is regulated by an inositol pyrophosphate signaling molecule, which is generated by a bifunctional kinase/phosphatase enzyme in response to changing ATP and phosphate levels. The signaling molecule then binds to a cellular receptor, which in turn inactivates a transcription factor regulating phosphate starvation responses. Thus, a signaling molecule relays the nutrient status of the plant to a signaling cascade, allowing for nutrient uptake, storage and redistribution. The groups of Dorothea Fiedler (Leibniz Institute for Molecular Pharmacology, Berlin, Germany), Alisdair Fernie (Max Planck Institute for Molecular Plant Physiology, Golm, Germany) and Gabriel Schaaf (University of Bonn, Germany) contributed to this study that was published in eLife on August 22.